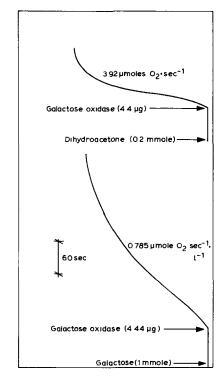
вва 63438

New substrate for galactose oxidase

Galactose oxidase (D-galactose oxygen oxidoreductase, EC 1 1 3 0) from *Polyporus circinatus* catalyzes the oxidation of galactose by molecular oxygen. In addition to the galactose, a number of compounds related to galactose were oxidized. The polymers containing galactose were oxidized much more rapidly than the galactose itself and showed much higher affinities for the enzyme¹.

Galactose oxidase was used as the reagent for the determination of galactose²⁻⁴. The present communication is concerned with dihydroxyacetone as the substrate for galactose oxidase.

Galactose oxidase purified from a culture medium of P circinatus had a specific activity of 9180 units/mg protein. Dihydroxyacetone supplied by Sigina Chemical Cowas chromatographically pure. For the assay of galactose oxidase, Glucostat Reagent (Worthington Biochem. Corp.) was used without glucose oxidase as described by Avigan ct al 1 Galactose oxidase was also assayed by the oxygen uptake at the oxygen electrode 5


LABLET

SPECIFICITY

The reaction mixture (10 ml) contained 0.5 ml of peroxidase—chromogen-buffered system, 1.85 μg of galactose oxidase, and 10 μ moles of the substrates. The samples were incubated for 10 mm at 30°

Substrati	Relative activity
n-Galactose	100
D-Sedoheptulose	0
n-Ribulose	0.25
D-Xylulose	0 33
Dihydroxyacetone	110
D-Glyceraldehyde	О
Dihydroxyacetone phosphate	()
DL-Glyceraldehyde 3-phosphate	0

Several keto compounds were assayed as substrates for galactose oxidase Table I shows that dihydroxyacetone was oxidized much more rapidly than galactose itself. The Michaelis-Menten constant (K_m) for dihydroxyacetone was determined by employing peroxidase-o-diamisdine or by observing the oxygen uptake. From a Lineweaver-Burk plot of the data, the K_m value for dihydroxyacetone was found to be 0.031 M in the first method and 0.045 M in the last one (Fig. 1). This meant that the K_m for dihydroxyacetone was 10 times smaller than that for galactose and of the same order as that obtained for melibiose. Fig. 2 shows the oxygen uptake when dihydroxyacetone or galactose was present in the incubation medium in the concentration of substrate saturation. The initial velocity of dihydroxyacetone was 5 times greater than that of galactose. The oxidation of dihydroxyacetone by galactose

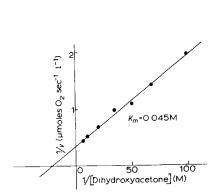


Fig I Effect of dihydroxyacetone concentration on enzyme activity as shown by Lineweaver-Burk plots. The oxygen uptake was measured at the oxygen electrode The incubation mixture contained I $85~\mu g$ of galactose oxidase, dihydroxyacetone as indicated in the figure, and o I M phosphate buffer (pH 7~2) to make up 2 ml

Fig 2. Comparative rates of dihydroxyacetone and galactose oxidation. The oxygen uptake was measured at the oxygen electrode 6 . The incubation mixture contained galactose, dihydroxyacetone, and galactose oxidase concentrations as indicated in the figure, and o 7 M phosphate buffer (pH 7 2) to make up 2 ml

oxidase was 100% inhibited by 2 mM hydroxylamine and 2.5 mM cyanide as was the galactose oxidation

The results suggest that dihydroxyacetone is a better substrate for galactose oxidase than galactose

This work was supported by Conselho Nacional de Pesquisas (CNPq), Brazil.

Instituto de Bioquímica da Universidade Federal do Paraná G T ZANCAN Instituto de Biologia e Pesquisas Tecnológicas do Paraná D AMARAL PO Box 939, Curitiba, Paraná (Brazil)

- 1 G AVIGAD, D AMARAL, C ASENSIO AND B L HORECKER, J Biol Chem , 237 (1962) 2736.
- 2 H ROTH, S SEGAL AND D BERTOLI, Anal Brochem, 10 (1965) 32
- 3 J B C Corrêa, A DMYTRACZENKO AND J H DUARTE, Carbohydrate Res., 3 (1967) 445
- 4 J F PRESTON, III AND J E GANDER, Arch Brochem Brophys, 124 (1968) 504
- 5 D AMARAL AND M BACILA, Arguiv Biol Technol Brazil, 12 (1966) 179
- 6 D O Voss, J C Cowles and M Bacila, Anal Brochem, 6 (1963) 211

Received September 3rd, 1969